AttributesValues
type
value
  • Activating mutations in LRRK2 kinase cause Parkinson’s disease. Pathogenic LRRK2 phosphorylates a subset of Rab GTPases and blocks ciliogenesis. Thus, defining novel phospho-Rab interacting partners is critical to our understanding of the molecular basis of LRRK2 pathogenesis. RILPL2 binds with strong preference to LRRK2-phosphorylated Rab8A and Rab10. RILPL2 is a binding partner of the motor protein and Rab effector, Myosin Va. We show here that the globular tail domain of Myosin Va also contains a high affinity binding site for LRRK2-phosphorylated Rab10, and certain tissue-specific Myosin Va isoforms strongly prefer to bind phosphorylated Rab10. In the presence of pathogenic LRRK2, RILPL2 relocalizes to the peri-centriolar region in a phosphoRab10- and Myosin Va-dependent manner. In the absence of phosphoRab10, expression of RILPL2 or depletion of Myosin Va increase centriolar RILPL2 levels, and either condition is sufficient to block ciliogenesis in RPE cells. These experiments show that LRRK2 generated phosphoRab10 dramatically redistributes Myosin Va-RILPL2 complexes to the mother centriole, which may sequester Myosin Va and RILPL2 in a manner that blocks their normal roles in ciliogenesis.
Subject
  • Proteins
  • Organelles
  • Neurodegenerative disorders
  • Cytoskeleton
  • Cell movement
  • Cell signaling
  • Protein superfamilies
  • Motor proteins
  • Skeletal muscle
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software