About: Abstract The mechanisms that enable Seneca Valley Virus (SVV) to escape the host innate immune response are not well known. Previous studies demonstrated that SVV 3Cpro suppresses innate immune responses by cleavage of host proteins and degradation of IRF3 and IRF7 protein expression. Here, we showed that SVV 3C protease (3Cpro) has deubiquitinating activity. Overexpressed 3Cpro inhibits the ubiquitination of cellular substrates, acting on both lysine-48- and lysine-63-linked polyubiquitin chains. SVV infection also possessed deubiquitinating activity. The ubiquitin-proteasome system was significantly involved in SVV replication. Furthermore, 3Cpro inhibited the ubiquitination of retinoic acid-inducible gene I (RIG-I), TANK-binding kinase 1 (TBK1), and TNF receptor-associated factor 3 (TRAF3), thereby blocking the expression of interferon (IFN)-β and IFN stimulated gene 54 (ISG54) mRNAs. A detailed analysis revealed that mutations (H48A, C160A, or H48A/C160A) that ablate the Cys and His residues of 3Cpro abrogated its deubiquitinating activity and the ability of 3Cpro to block IFN-β induction. Together, our results demonstrate a novel mechanism developed by SVV 3Cpro to promote viral replication, and may also provide a novel strategy for improving ubiquitination-based therapy.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract The mechanisms that enable Seneca Valley Virus (SVV) to escape the host innate immune response are not well known. Previous studies demonstrated that SVV 3Cpro suppresses innate immune responses by cleavage of host proteins and degradation of IRF3 and IRF7 protein expression. Here, we showed that SVV 3C protease (3Cpro) has deubiquitinating activity. Overexpressed 3Cpro inhibits the ubiquitination of cellular substrates, acting on both lysine-48- and lysine-63-linked polyubiquitin chains. SVV infection also possessed deubiquitinating activity. The ubiquitin-proteasome system was significantly involved in SVV replication. Furthermore, 3Cpro inhibited the ubiquitination of retinoic acid-inducible gene I (RIG-I), TANK-binding kinase 1 (TBK1), and TNF receptor-associated factor 3 (TRAF3), thereby blocking the expression of interferon (IFN)-β and IFN stimulated gene 54 (ISG54) mRNAs. A detailed analysis revealed that mutations (H48A, C160A, or H48A/C160A) that ablate the Cys and His residues of 3Cpro abrogated its deubiquitinating activity and the ability of 3Cpro to block IFN-β induction. Together, our results demonstrate a novel mechanism developed by SVV 3Cpro to promote viral replication, and may also provide a novel strategy for improving ubiquitination-based therapy.
Subject
  • Thiols
  • 1904 establishments in the Netherlands
  • Football clubs in Schiedam
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software