About: Objective: In absence of any vaccine, the Corona Virus Disease 2019 (COVID-19) pandemic is being contained through a non-pharmaceutical measure termed Social Distancing (SD). However, whether SD alone is enough to flatten the epidemic curve is debatable. Using a Stochastic Computational Simulation Model, we investigated the impact of increasing SD, hospital beds and COVID-19 detection rates in preventing COVID-19 cases and fatalities. Research Design and Methods: The Stochastic Simulation Model was built using the EpiModel package in R. As a proof of concept study, we ran the simulation on Kasaragod, the most affected district in Kerala. We added 3 compartments to the SEIR model to obtain a SEIQHRF (Susceptible-Exposed-Infectious-Quarantined-Hospitalised-Recovered-Fatal) model. Results: Implementing SD only delayed the appearance of peak prevalence of COVID-19 cases. Doubling of hospital beds could not reduce the fatal cases probably due to its overwhelming number compared to the hospital beds. Increasing detection rates could significantly flatten the curve and reduce the peak prevalence of cases (increasing detection rate by 5 times could reduce case number to half). Conclusions: An effective strategy to contain the epidemic spread of COVID-19 in India is to increase detection rates in combination with SD measures and increase in hospital beds.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Objective: In absence of any vaccine, the Corona Virus Disease 2019 (COVID-19) pandemic is being contained through a non-pharmaceutical measure termed Social Distancing (SD). However, whether SD alone is enough to flatten the epidemic curve is debatable. Using a Stochastic Computational Simulation Model, we investigated the impact of increasing SD, hospital beds and COVID-19 detection rates in preventing COVID-19 cases and fatalities. Research Design and Methods: The Stochastic Simulation Model was built using the EpiModel package in R. As a proof of concept study, we ran the simulation on Kasaragod, the most affected district in Kerala. We added 3 compartments to the SEIR model to obtain a SEIQHRF (Susceptible-Exposed-Infectious-Quarantined-Hospitalised-Recovered-Fatal) model. Results: Implementing SD only delayed the appearance of peak prevalence of COVID-19 cases. Doubling of hospital beds could not reduce the fatal cases probably due to its overwhelming number compared to the hospital beds. Increasing detection rates could significantly flatten the curve and reduce the peak prevalence of cases (increasing detection rate by 5 times could reduce case number to half). Conclusions: An effective strategy to contain the epidemic spread of COVID-19 in India is to increase detection rates in combination with SD measures and increase in hospital beds.
part of
is abstract of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software