About: BACKGROUND: Previous reports have suggested that transmission of SARS-CoV-2 is reduced by higher temperatures and higher humidity. We analyzed case-data from the United States to investigate effects of temperature, precipitation, and UV Light on community transmission of SARS-CoV-2. METHODS: Daily reported cases of SARS-CoV-2 across the United States from 01/22/2020 to 04/03/2020 were analyzed. We used negative binomial regression modelling to investigate whether daily maximum temperature, precipitation, UV Index and the incidence 5 days later were related. We performed sensitivity analyses at 3 days, 7 days and 9 days to assess transmission lags. RESULTS: A maximum temperature greater than 52°F on a given day was associated with a lower rate of new cases at 5 days[IRR: 0.85(0.76,0.96)p=0.009]. Among observations with daily temperatures below 52°F, there was a significant inverse association between the maximum daily temperature and the rate of cases at 5 days [IRR 0.98(0.97,0.99)p=0.001]. The rate of new cases was predicted to be lower for theoretical states that maintained a stable maximum daily temperature above 52°F with a predicted 23-fewer cases per-million per-day by 25 days of the epidemic. A 1-unit higher UV index was associated with a lower rate at 5 days [IRR 0.97(0.95,0.99)p=0.004]. Precipitation was not associated with a greater rate of cases at 5 days [IRR 0.98(0.89,1.08)p=0.65]. CONCLUSION: The incidence of disease declines with increasing temperature up until 52°F and is lower at warmer versus cooler temperatures. However, the association between temperature and transmission is small and transmission is likely to remain high at warmer temperatures.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • BACKGROUND: Previous reports have suggested that transmission of SARS-CoV-2 is reduced by higher temperatures and higher humidity. We analyzed case-data from the United States to investigate effects of temperature, precipitation, and UV Light on community transmission of SARS-CoV-2. METHODS: Daily reported cases of SARS-CoV-2 across the United States from 01/22/2020 to 04/03/2020 were analyzed. We used negative binomial regression modelling to investigate whether daily maximum temperature, precipitation, UV Index and the incidence 5 days later were related. We performed sensitivity analyses at 3 days, 7 days and 9 days to assess transmission lags. RESULTS: A maximum temperature greater than 52°F on a given day was associated with a lower rate of new cases at 5 days[IRR: 0.85(0.76,0.96)p=0.009]. Among observations with daily temperatures below 52°F, there was a significant inverse association between the maximum daily temperature and the rate of cases at 5 days [IRR 0.98(0.97,0.99)p=0.001]. The rate of new cases was predicted to be lower for theoretical states that maintained a stable maximum daily temperature above 52°F with a predicted 23-fewer cases per-million per-day by 25 days of the epidemic. A 1-unit higher UV index was associated with a lower rate at 5 days [IRR 0.97(0.95,0.99)p=0.004]. Precipitation was not associated with a greater rate of cases at 5 days [IRR 0.98(0.89,1.08)p=0.65]. CONCLUSION: The incidence of disease declines with increasing temperature up until 52°F and is lower at warmer versus cooler temperatures. However, the association between temperature and transmission is small and transmission is likely to remain high at warmer temperatures.
Subject
  • Zoonoses
  • United States
  • COVID-19
  • Atmospheric thermodynamics
  • Electromagnetic spectrum
  • Sarbecovirus
  • Chiroptera-borne diseases
  • Infraspecific virus taxa
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software