About: The rapid expansion of COVID-19 has caused a global pandemic. Although quarantine measures have been used widely, the critical steps among them to suppress the outbreak without a huge social-economic loss remain unknown. Hong Kong, unlike other regions in the world, had a massive number of travellers from Mainland China during the early expansion period, and yet the spread of virus has been relatively limited. Understanding the effect of control measures to reduce the transmission in Hong Kong can improve the control of the virus spreading. We have developed a susceptible-exposed-infectious-quarantined-recovered (SEIQR) meta-population model that can stratify the infections into imported and subsequent local infections, and therefore to obtain the control effects on transmissibility in a region with many imported cases. We fitted the model to both imported and local confirmed cases with symptom onset from 18 January to 29 February 2020 in Hong Kong with daily transportation data and the transmission dynamics from Wuhan and Mainland China. The model estimated that the reproductive number was dropped from 2.32 to 0.76 (95% CI, 0.66 to 0.86) after an infected case was estimated to be quarantined half day before the symptom onset, corresponding to the incubation time of 5.43 days (95% CI, 1.30-9.47). If the quarantine happened about one day after the onset, community spread would be likely to occur, indicated by the reproductive number larger than one. The results suggest that the early quarantine for a suspected case before the symptom onset is a key factor to suppress COVID-19.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The rapid expansion of COVID-19 has caused a global pandemic. Although quarantine measures have been used widely, the critical steps among them to suppress the outbreak without a huge social-economic loss remain unknown. Hong Kong, unlike other regions in the world, had a massive number of travellers from Mainland China during the early expansion period, and yet the spread of virus has been relatively limited. Understanding the effect of control measures to reduce the transmission in Hong Kong can improve the control of the virus spreading. We have developed a susceptible-exposed-infectious-quarantined-recovered (SEIQR) meta-population model that can stratify the infections into imported and subsequent local infections, and therefore to obtain the control effects on transmissibility in a region with many imported cases. We fitted the model to both imported and local confirmed cases with symptom onset from 18 January to 29 February 2020 in Hong Kong with daily transportation data and the transmission dynamics from Wuhan and Mainland China. The model estimated that the reproductive number was dropped from 2.32 to 0.76 (95% CI, 0.66 to 0.86) after an infected case was estimated to be quarantined half day before the symptom onset, corresponding to the incubation time of 5.43 days (95% CI, 1.30-9.47). If the quarantine happened about one day after the onset, community spread would be likely to occur, indicated by the reproductive number larger than one. The results suggest that the early quarantine for a suspected case before the symptom onset is a key factor to suppress COVID-19.
subject
  • Virology
  • Hong Kong
  • Metropolitan areas of China
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software