Description
Metadata
Settings
About:
Motivated by the apparent societal need to design complex autonomous systems whose decisions and actions are humanly intelligible, the study of explainable artificial intelligence, and with it, research on explainable autonomous agents has gained increased attention from the research community. One important objective of research on explainable agents is the evaluation of explanation approaches in human-computer interaction studies. In this demonstration paper, we present a way to facilitate such studies by implementing explainable agents and multi-agent systems that i) can be deployed as static files, not requiring the execution of server-side code, which minimizes administration and operation overhead, and ii) can be embedded into web front ends and other JavaScript-enabled user interfaces, hence increasing the ability to reach a broad range of users. We then demonstrate the approach with the help of an application that was designed to assess the effect of different explainability approaches on the human intelligibility of an unmanned aerial vehicle simulation.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
6
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software