Description
Metadata
Settings
About:
With the exponential growth of users and user-generated content present on online social networks, fake news and its detection have become a major problem. Through these, smear campaigns can be generated, aimed for example at trying to change the political orientation of some people. Twitter has become one of the main spreaders of fake news in the network. Therefore, in this paper, we present a solution based on Text Mining that tries to find which text patterns are related to tweets that refer to fake news and which patterns in the tweets are related to true news. To test and validate the results, the system faces a pre-labelled dataset of fake and real tweets during the U.S. presidential election in 2016. In terms of results interesting patterns are obtained that relate the size and subtle changes of the real news to create fake news. Finally, different ways to visualize the results are provided.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
3
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software