Description
Metadata
Settings
About:
Due to the high availability of large-scale annotated image datasets, knowledge transfer from pre-trained models showed outstanding performance in medical image classification. However, building a robust image classification model for datasets with data irregularity or imbalanced classes can be a very challenging task, especially in the medical imaging domain. In this paper, we propose a novel deep convolutional neural network, we called Self Supervised Super Sample Decomposition for Transfer learning (4S-DT) model.4S-DTencourages a coarse-to-fine transfer learning from large-scale image recognition tasks to a specific chest X-ray image classification task using a generic self-supervised sample decomposition approach. Our main contribution is a novel self-supervised learning mechanism guided by a super sample decomposition of unlabelled chest X-ray images. 4S-DT helps in improving the robustness of knowledge transformation via a downstream learning strategy with a class-decomposition layer to simplify the local structure of the data.4S-DT can deal with any irregularities in the image dataset by investigating its class boundaries using a downstream class-decomposition mechanism. We used 50,000 unlabelled chest X-ray images to achieve our coarse-to-fine transfer learning with an application to COVID-19 detection, as an exemplar. 4S-DT has achieved an accuracy of 97.54% (95% CI: 96.22%, 98.91%) in the detection of COVID-19 cases on an extended test set enriched by augmented images, out of which all real COVID-19 cases were detected, which was the highest accuracy obtained when compared to other methods.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
7
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software