Description
Metadata
Settings
About:
Internet of Things (IoT) devices are inherently vulnerable due to insecure design, implementation, and configuration. Aggressive behavior change, due to increased attacker’s sophistication, and the heterogeneity of the data in IoT have proven that securing IoT devices is a making challenge. To detect intensive attacks and increase device uptime, we propose a novel ensemble learning model for IoT anomaly detection using software-defined networks (SDN). We use a deep auto-encoder to extract handy features for stacking into an ensemble learning model. The learned model is deployed in the SDN controller to detect anomalies or dynamic attacks in IoT by addressing the class imbalance problem. We validate the model with real-time testbed and benchmark datasets. The initial results show that our model has a better and more reliable performance than the competing models showcased in the relevant related work.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
8
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software