OpenLink Software

About: OBJECTIVE: to explore the best type of curve or trend model that could explain the epidemiological behavior of the infection by COVID-19 and derive the possible causes that contribute to explain the corresponding model and the health implications that can be inferred. METHOD: data were collected from the COVID-19 reports of the Department of Epidemiology, Ministry of Health, Chile. Curve adjustment studies were developed with the data in four different models: quadratic, exponential, simple exponential smoothing, and double exponential smoothing. The significance level used was α≤0.05. RESULTS: the curve that best fits the evolution of the accumulated confirmed cases of COVID-19 in Chile is the doubly-smoothed exponential curve. CONCLUSION: the number of infected patients will continue to increase. Chile needs to remain vigilant and adjust the strategies around the prevention and control measures. The behavior of the population plays a fundamental role. We suggest not relaxing restrictions and further improving epidemiological surveillance. Emergency preparations are needed and more resource elements need to be added to the current health support. This prediction is provisional and depends on keeping all intervening variables constant. Any alteration will modify the prediction.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software