OpenLink Software

About: COVID-19 remains a major pandemic currently threatening all the countries of the world. In Nigeria, there were 1, 932 COVID-19 confirmed cases, 319 discharged cases and 58 deaths as of 30th April 2020. This paper, therefore, subjected the daily cumulative reported COVID-19 cases of these three variables to nine (9) curve estimation statistical models in simple, quadratic, cubic, and quartic forms. It further identified the best of the thirty-six (36) models and used the same for prediction and forecasting purposes. The data collected by the Nigeria Centre for Disease Control for sixty-four (64) days, two (2) months and three (3), were daily monitored and eventually analyzed. We identified the best models to be Quartic Linear Regression Model with an autocorrelated error of order 1 (AR(1)); and found the Ordinary Least Squares, Cochrane Orcutt, Hildreth–Lu, and Prais-Winsten and Least Absolute Deviation (LAD) estimators useful to estimate the models’ parameters. Consequently, we recommended the daily cumulative forecast values of the LAD estimator for May and June 2020 with a 99% confidence level. The forecast values are alarming, and so, the Nigerian Government needs to hastily review her activities and interventions towards COVID-19 to provide some tactical and robust structures and measures to avert these challenges.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software