OpenLink Software

About: The assembly of viral proteins into a range of macromolecular complexes of strictly defined architecture is one of Nature's wonders. Unraveling the details of these complex structures and the associated self‐assembly pathways that lead to their efficient and precise construction will play an important role in the development of anti‐viral therapeutics. It will also be important in bio‐nanotechnology where there is a plethora of applications for such well‐defined macromolecular complexes, including cell‐specific drug delivery and as substrates for the formation of novel materials with unique electrical and magnetic properties. Mass spectrometry has the ability not only to measure masses accurately but also to provide vital details regarding the composition and stoichiometry of intact, non‐covalently bound macromolecular complexes under near‐physiological conditions. It is thus ideal for exploring the assembly and function of viruses. Over the past decade or so, significant advances have been made in this field, and these advances are summarized in this review, which covers the literature up to the end of 2007. © 2008 Wiley Periodicals, Inc., Mass Spec Rev 27: 575–595, 2008

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software