OpenLink Software

About: Models have gained the spotlight in many discussions surrounding COVID-19. The urgency for timely decisions resulted in a multitude of models as informed policy actions must be made even when so many uncertainties about the pandemic still remain. In this paper, we use machine learning algorithms to build intuitive country-level COVID-19 motion models described by death toll velocity and acceleration. Model explainability techniques provide insightful data-driven narratives about COVID-19 death toll motion models $-$ while velocity is explained by factors that are increasing/reducing death toll pace now, acceleration anticipates the effects of public health measures on slowing the death toll pace. This allows policymakers and epidemiologists to understand factors driving the outbreak and to evaluate the impacts of different public health measures. Finally, our models also predict counterfactuals in order to face the challenge of estimating what is likely to happen as a result of an action.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software