OpenLink Software

About: Neural networks provide quick approximations to complex functions, and have been increasingly used in perception as well as control tasks. For use in mission-critical and safety-critical applications, however, it is important to be able to analyze what a neural network can and cannot do. For feed-forward neural networks with ReLU activation functions, although exact analysis is NP-complete, recently-proposed verification methods can sometimes succeed. The main practical problem with neural network verification is excessive analysis runtime. Even on small networks, tools that are theoretically complete can sometimes run for days without producing a result. In this paper, we work to address the runtime problem by improving upon a recently-proposed geometric path enumeration method. Through a series of optimizations, several of which are new algorithmic improvements, we demonstrate significant speed improvement of exact analysis on the well-studied ACAS Xu benchmarks, sometimes hundreds of times faster than the original implementation. On more difficult benchmark instances, our optimized approach is often the fastest, even outperforming inexact methods that leverage overapproximation and refinement.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software