Description
Metadata
Settings
About:
BioSense is a US national system that uses data from health information systems for automated disease surveillance. We studied 4 time-series algorithm modifications designed to improve sensitivity for detecting artificially added data. To test these modified algorithms, we used reports of daily syndrome visits from 308 Department of Defense (DoD) facilities and 340 hospital emergency departments (EDs). At a constant alert rate of 1%, sensitivity was improved for both datasets by using a minimum standard deviation (SD) of 1.0, a 14–28 day baseline duration for calculating mean and SD, and an adjustment for total clinic visits as a surrogate denominator. Stratifying baseline days into weekdays versus weekends to account for day-of-week effects increased sensitivity for the DoD data but not for the ED data. These enhanced methods may increase sensitivity without increasing the alert rate and may improve the ability to detect outbreaks by using automated surveillance system data.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
11
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software