Description
Metadata
Settings
About:
Dependency-based anomaly detection methods detect anomalies by looking at the deviations from the normal probabilistic dependency among variables and are able to discover more subtle and meaningful anomalies. However, with high dimensional data, they face two key challenges. One is how to find the right set of relevant variables for a given variable from the large search space to assess dependency deviation. The other is how to use the dependency to estimate the expected value of a variable accurately. In this paper, we propose the Local Prediction approach to Anomaly Detection (LoPAD) framework to deal with the two challenges simultaneously. Through introducing Markov Blanket into dependency-based anomaly detection, LoPAD decomposes the high dimensional unsupervised anomaly detection problem into local feature selection and prediction problems while achieving better performance and interpretability. The framework enables instantiations with off-the-shelf predictive models for anomaly detection. Comprehensive experiments have been done on both synthetic and real-world data. The results show that LoPAD outperforms state-of-the-art anomaly detection methods.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
6
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software