OpenLink Software

About: How online cultural content is chosen based on conscious or subconscious criteria is an central question across a broad spectrum of sciences and for the entertainment industry, including content providers and distributors. To this end, a number of tailored analytics forming the backbone of recommendation engines specialized for retrieving cultural content are proposed. Their strength derives directly from well-established principles of cognitive science and behavioral economics, both scientific fields exploring aspects of human decision making. Another novel contribution of this conference paper is that these analytics are implemented in Neo4j expressed as Cypher queries. Various aspects of the cultural content and digital consumers can be naturally represented by appropriately configured vertices, whereas edges represent various connections indicating content delivery preferences. Early experiments conducted over a synthetic dataset mimicking the distributions of preferences and ratings of well-known movie datasets are encouraging as the proposed analytics outperformed the baseline of a multilayer feedforward neural network of various configurations. The synthetic dataset contains enriched preferences of mobile digital consumers of cultural content regarding literature of the Greek region of Ionian Islands.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software