Description
Metadata
Settings
About:
Due to the rapid spread of coronavirus, Vietnam introduced its first national partial lockdown on April 1st, 2020. The public relied on online sources, whether through official websites or phone-based applications, to acquire up-to-date health information, provide accurate instructions, and limit misinformation. This study aims to provide insight regarding the current level of awareness of the pandemic, and to identify associated factors in Vietnamese participants to recommend necessary interventions. A cross-sectional study was conducted using a web-based survey during the first week of the lockdown period. There were 341 observations collected using a snowball sampling technique. A Tobit multivariable regression model was used to identify factors associated with the demand for each category of health information. The most requested information was the latest updated news on the epidemic, followed by information about disease symptoms and updated news on the outbreak. The prevalence of diverse socioeconomic, demographic, and ethnic factors in Vietnam requires consideration of the specific health information needs of unique groups. Identifying group-specific demands would be helpful to provide proper information to fulfill each population group’s needs.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
4
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software