Description
Metadata
Settings
About:
C-C bond formation is at the heart of anabolism and organic chemistry, but relatively few enzymatic strategies for catalyzing this reaction are known. The enzyme ForT catalyzes C-C bond formation between 5’-phosphoribosyl-1’-pyrophosphate (PRPP) and 4-amino-1H-pyrazole-3,5-dicarboxylate to make a key intermediate in the biosynthesis of the C-nucleotide formycin A 5’-phosphate; we now report the 2.5 Å resolution structure of the ForT/PRPP complex and thus locate the active site. Site-directed mutagenesis has identified those residues critical for PRPP recognition and catalysis. Structural conservation with GHMP kinases suggests that stabilization of the negatively charged pyrophosphate leaving group is crucial for catalysis in ForT. A mechanism for this new class of C-C bond forming enzymes is proposed. Entry for the Table of Contents A new class of enzymes catalyse C-C bond formation by irreversible CO2 and pyrophosphate production.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
3
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software