Description
Metadata
Settings
About:
Temporal psycholinguistics can play a crucial role in studying expressions of suicidal intent on social media. Current methods are limited in their approach in leveraging contextual psychological cues from online user communities. This work embarks in a novel direction to explore historical activities of users and homophily networks formed between Twitter users for extracting suicidality trends. Empirical evidence proves the advantages of incorporating historical user profiling and temporal graph convolutional modeling for automated detection of suicidal connotations on Twitter.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
3
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software