OpenLink Software

About: Estimates of the reproductive number for novel pathogens such as SARS-CoV-2 are essential for understanding the potential trajectory of the epidemic and the level of intervention that is needed to bring the epidemic under control. However, most methods for estimating the basic reproductive number (R(0)) and time-varying effective reproductive number (R(t)) assume that the fraction of cases detected and reported is constant through time. We explore the impact of secular changes in diagnostic testing and reporting on estimates of R(0) and R(t) using simulated data. We then compare these patterns to data on reported cases of COVID-19 and testing practices from different United States (US) states. We find that changes in testing practices and delays in reporting can result in biased estimates of R(0) and R(t). Examination of changes in the daily number of tests conducted and the percent of patients testing positive may be helpful for identifying the potential direction of bias. Changes in diagnostic testing and reporting processes should be monitored and taken into consideration when interpreting estimates of the reproductive number of COVID-19.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software