Description
Metadata
Settings
About:
Estimates of the reproductive number for novel pathogens such as SARS-CoV-2 are essential for understanding the potential trajectory of the epidemic and the level of intervention that is needed to bring the epidemic under control. However, most methods for estimating the basic reproductive number (R(0)) and time-varying effective reproductive number (R(t)) assume that the fraction of cases detected and reported is constant through time. We explore the impact of secular changes in diagnostic testing and reporting on estimates of R(0) and R(t) using simulated data. We then compare these patterns to data on reported cases of COVID-19 and testing practices from different United States (US) states. We find that changes in testing practices and delays in reporting can result in biased estimates of R(0) and R(t). Examination of changes in the daily number of tests conducted and the percent of patients testing positive may be helpful for identifying the potential direction of bias. Changes in diagnostic testing and reporting processes should be monitored and taken into consideration when interpreting estimates of the reproductive number of COVID-19.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
3
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software