OpenLink Software

About: The 2019 coronavirus disease (COVID-19) pandemic has led to physical distancing measures in numerous countries in an attempt to control the spread. However, these measures are not without cost to the health and economies of the nations in which they are enacted. Nations are now looking for methods to remove physical distancing measures and return to full functioning. To prevent a massive second wave of infections, this must be done with a data-driven methodology. The purpose of this article is to propose an algorithm for COVID-19 testing that would allow for physical distancing to be scaled back in a stepwise manner, which limits ensuing infections and protects the capacity of the health care system.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software