Description
Metadata
Settings
About:
PURPOSE: Severe pharyngitis is frequently associated with inflammations caused by streptococcal pharyngitis, which can cause immune-mediated and post-infectious complications. The recent global pandemic of coronavirus disease (COVID-19) encourages the use of telemedicine for patients with respiratory symptoms. This study therefore purposes automated detection of severe pharyngitis using a deep learning framework with self-taken throat images. METHODS: A dataset composed of two classes of 131 throat images with pharyngitis and 208 normal throat images was collected. Before the training classifier, we constructed a cycle consistency generative adversarial network (CycleGAN) to augment the training dataset. The ResNet50, Inception-v3, and MobileNet-v2 architectures were trained with transfer learning and validated using a randomly selected test dataset. The performance of the models was evaluated based on the accuracy and area under the receiver operating characteristic curve (ROC-AUC). RESULTS: The CycleGAN-based synthetic images were reflected the pragmatic characteristic features of pharyngitis. Using the synthetic throat images, the deep learning model demonstrated a significant improvement in the accuracy of the pharyngitis diagnosis. ResNet50 with GAN-based augmentation showed the best ROC-AUC of 0.988 for pharyngitis detection in the test dataset. In the 4-fold cross-validation using the ResNet50, the highest detection accuracy and ROC-AUC achieved were 95.3% and 0.992, respectively. CONCLUSION: The deep learning model for smartphone-based pharyngitis screening allows for fast identification of severe pharyngitis with a potential of the timely diagnosis of pharyngitis. In the recent pandemic of COVID-19, this framework will help patients with upper respiratory symptoms to improve convenience in diagnosis and reduce transmission.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
7
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software