Description
Metadata
Settings
About:
The influenza pandemic causes a large number of hospitalizations and even deaths. There is an urgent need for an efficient and effective method for detecting the outbreak of influenza so that timely, appropriate interventions can be made to prevent or at least prepare for catastrophic epidemics. In this study, we proposed a computational method, the shortest-path-based dynamical network marker (SP-DNM), to detect the pre-outbreak state of influenza epidemics by monitoring the dynamical change of the shortest path in a city network. Specifically, by mapping the real-time information to a properly constructed city network, our method detects the early-warning signal prior to the influenza outbreak in both Tokyo and Hokkaido for consecutive 9 years, which demonstrate the effectiveness and robustness of the proposed method.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
9
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software