OpenLink Software

About: Abstract This study aims to understand knowledge structure both quantitatively and visually by integrating keyword analysis and social network analysis of scientific papers. The methodology proposed in this study is capable of creating a three-dimensional “Research focus parallelship network” and a “Keyword Co-occurrence Network”, together with a two-dimensional knowledge map. The network and knowledge map can be depicted differently by choosing different information for the network actor, i.e. country, institute, paper and keyword, to reflect knowledge structures from macro, to meso, to micro-levels. A total of 223 highly cited papers published by 142 institutes and 26 countries are analyzed in this study. China and the US are the two countries located at the core of knowledge structure and China is ranked no. 1. This quantitative exploration provides a way to unveil important or emerging components in scientific development and also to visualize knowledge; thus an objective evaluation of scientific research is possible for quantitative technology management.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software