OpenLink Software

About: Recommendation algorithms based on collaborative filtering show products which people might like and play an important role in personalized service. Nevertheless, the most of them just adopt explicit information feedback and achieve low recommendation accuracy. In recent years, deep learning methods utilize non-linear network framework to receive feature representation of massive data, which can obtain implicit information feedback. Therefore, many algorithms are designed based on deep learning to improve recommendation effects. Even so, the results are unsatisfactory. The reason is that they never consider explicit information feedback. In this paper, we propose a Hybrid Granular Algorithm for Rating Recommendation (HGAR), which is based on granulation computing. The core idea is to explore the multi-granularity of interaction information for both explicit and implicit feedback to predict the users ratings. Thus, we used Singular Value Decomposition model to get explicit information and implicit information can be received by multi-layer perception of deep learning. In addition, we fused the two part information when the two models are jointly trained. Therefore, HGAR can explore the multi-granularity of interaction information which learned explicit interaction information and mined implicit information in different information granular level. Experiment results show that HGAR significantly improved recommendation accuracy compared with different recommendation models including collaborative filtering and deep learning methods.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software