Description
Metadata
Settings
About:
Recommendation algorithms based on collaborative filtering show products which people might like and play an important role in personalized service. Nevertheless, the most of them just adopt explicit information feedback and achieve low recommendation accuracy. In recent years, deep learning methods utilize non-linear network framework to receive feature representation of massive data, which can obtain implicit information feedback. Therefore, many algorithms are designed based on deep learning to improve recommendation effects. Even so, the results are unsatisfactory. The reason is that they never consider explicit information feedback. In this paper, we propose a Hybrid Granular Algorithm for Rating Recommendation (HGAR), which is based on granulation computing. The core idea is to explore the multi-granularity of interaction information for both explicit and implicit feedback to predict the users ratings. Thus, we used Singular Value Decomposition model to get explicit information and implicit information can be received by multi-layer perception of deep learning. In addition, we fused the two part information when the two models are jointly trained. Therefore, HGAR can explore the multi-granularity of interaction information which learned explicit interaction information and mined implicit information in different information granular level. Experiment results show that HGAR significantly improved recommendation accuracy compared with different recommendation models including collaborative filtering and deep learning methods.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
7
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software