OpenLink Software

About: We present two different approaches for modeling the spread of the COVID-19 pandemic. Both approaches are based on the population classes susceptible, exposed, infectious, quarantined, and recovered and allow for an arbitrary number of subgroups with different infection rates and different levels of testing. The first model is derived from a set of ordinary differential equations that incorporate the rates at which population transitions take place among classes. The other is a particle model, which is a specific case of crowd simulation model, in which the disease is transmitted through particle collisions and infection rates are varied by adjusting the particle velocities. The parameters of these two models are tuned using information on COVID-19 from the literature and country-specific data, including the effect of restrictions as they were imposed and lifted. We demonstrate the applicability of both models using data from Cyprus, for which we find that both models yield very similar results, giving confidence in the predictions.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software