Description
Metadata
Settings
About:
Most of the existing methods for the robustness and targeted immunization problems can be viewed as greedy strategies, which are quite efficient but readily induce a local optimization. In this paper, starting from a percolation perspective, we develop two strategies, the relationship-related (RR) strategy and the prediction relationship (PR) strategy, to avoid a local optimum only through the investigation of interrelationships among nodes. Meanwhile, RR combines the sum rule and the product rule from explosive percolation, and PR holds the assumption that nodes with high degree are usually more important than those with low degree. In this manner our methods have a better capability to collapse or protect a network. The simulations performed on a number of networks also demonstrate their effectiveness, especially on large real-world networks where RR fragments each of them into the same size of the giant component; however, RR needs only less than [Formula: see text] of the number of nodes which are necessary for the most excellent existing methods.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
12
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software