OpenLink Software

About: Appropriate indexing of resources is necessary for their efficient search, discovery and utilization. Relying solely on manual effort is time-consuming, costly and error prone. On the other hand, the special nature, volume and broadness of biomedical literature pose barriers for automated methods. We argue that current word embedding algorithms can be efficiently used to support the task of biomedical text classification. Both deep- and shallow network approaches are implemented and evaluated. Large datasets of biomedical citations and full texts are harvested for their metadata and used for training and testing. The ontology representation of Medical Subject Headings provides machine-readable labels and specifies the dimensionality of the problem space. These automated approaches are still far from entirely substituting human experts, yet they can be useful as a mechanism for validation and recommendation. Dataset balancing, distributed processing and training parallelization in GPUs, all play an important part regarding the effectiveness and performance of proposed methods.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software