Description
Metadata
Settings
About:
Supervisory Control and Data Acquisition (SCADA) systems used in wind turbines for monitoring the health and performance of a wind farm can suffer from data loss due to sensor failure, transmission link breakdown or network congestion. Sensory data is used for important control decisions and such data loss can make the failures harder to detect. This work proposes various solutions to reconstruct the lost information of important SCADA parameters using Linear and non-linear Artificial Intelligence (AI) algorithms. It comprises of three major contributions; (1) signal reconstruction from other available SCADA parameters, (2) comparison of linear and non-linear AI models, and (3) generalization of the AI algorithms between turbines. Experimental results demonstrate the effectiveness of the developed methodologies for reconstruction of the lost information for valuable planning decisions.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
8
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software