Description
Metadata
Settings
About:
Objective: In absence of any vaccine, the Corona Virus Disease 2019 (COVID-19) pandemic is being contained through a non-pharmaceutical measure termed Social Distancing (SD). However, whether SD alone is enough to flatten the epidemic curve is debatable. Using a Stochastic Computational Simulation Model, we investigated the impact of increasing SD, hospital beds and COVID-19 detection rates in preventing COVID-19 cases and fatalities. Research Design and Methods: The Stochastic Simulation Model was built using the EpiModel package in R. As a proof of concept study, we ran the simulation on Kasaragod, the most affected district in Kerala. We added 3 compartments to the SEIR model to obtain a SEIQHRF (Susceptible-Exposed-Infectious-Quarantined-Hospitalised-Recovered-Fatal) model. Results: Implementing SD only delayed the appearance of peak prevalence of COVID-19 cases. Doubling of hospital beds could not reduce the fatal cases probably due to its overwhelming number compared to the hospital beds. Increasing detection rates could significantly flatten the curve and reduce the peak prevalence of cases (increasing detection rate by 5 times could reduce case number to half). Conclusions: An effective strategy to contain the epidemic spread of COVID-19 in India is to increase detection rates in combination with SD measures and increase in hospital beds.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software