Description
Metadata
Settings
About:
Owing to the ubiquity of computer software, software vulnerability detection (SVD) has become an important problem in the software industry and computer security. One of the most crucial issues in SVD is coping with the scarcity of labeled vulnerabilities in projects that require the laborious manual labeling of code by software security experts. One possible solution is to employ deep domain adaptation (DA) which has recently witnessed enormous success in transferring learning from structural labeled to unlabeled data sources. Generative adversarial network (GAN) is a technique that attempts to bridge the gap between source and target data in the joint space and emerges as a building block to develop deep DA approaches with state-of-the-art performance. However, deep DA approaches using the GAN principle to close the gap are subject to the mode collapsing problem that negatively impacts the predictive performance. Our aim in this paper is to propose Dual Generator-Discriminator Deep Code Domain Adaptation Network (Dual-GD-DDAN) for tackling the problem of transfer learning from labeled to unlabeled software projects in SVD to resolve the mode collapsing problem faced in previous approaches. The experimental results on real-world software projects show that our method outperforms state-of-the-art baselines by a wide margin.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
7
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software