Description
Metadata
Settings
About:
The behavior of various kinds of dynamic systems can be formalized using typed attributed graph transformation systems (GTSs). The states of these systems are then modelled using graphs and the evolution of the system from one state to another is described by a finite set of graph transformation rules. GTSs with small finite state spaces can be analyzed with ease but analysis is intractable/undecidable for GTSs inducing large/infinite state spaces due to the inherent expressiveness of GTSs. Hence, automatic analysis procedures do not terminate or return indefinite or incorrect results. We propose an analysis procedure for establishing state-invariants for GTSs that are given by nested graph conditions (GCs). To this end, we formalize a symbolic analysis algorithm based on k-induction using Isabelle, apply it to GTSs and GCs over typed attributed graphs, develop support to single out some spurious counterexamples, and demonstrate the feasibility of the approach using our prototypical implementation.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
14
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software