OpenLink Software

About: The behavior of various kinds of dynamic systems can be formalized using typed attributed graph transformation systems (GTSs). The states of these systems are then modelled using graphs and the evolution of the system from one state to another is described by a finite set of graph transformation rules. GTSs with small finite state spaces can be analyzed with ease but analysis is intractable/undecidable for GTSs inducing large/infinite state spaces due to the inherent expressiveness of GTSs. Hence, automatic analysis procedures do not terminate or return indefinite or incorrect results. We propose an analysis procedure for establishing state-invariants for GTSs that are given by nested graph conditions (GCs). To this end, we formalize a symbolic analysis algorithm based on k-induction using Isabelle, apply it to GTSs and GCs over typed attributed graphs, develop support to single out some spurious counterexamples, and demonstrate the feasibility of the approach using our prototypical implementation.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software