OpenLink Software

About: We propose ARIANN, a low-interaction framework to perform private training and inference of standard deep neural networks on sensitive data. This framework implements semi-honest 2-party computation and leverages function secret sharing, a recent cryptographic protocol that only uses lightweight primitives to achieve an efficient online phase with a single message of the size of the inputs, for operations like comparison and multiplication which are building blocks of neural networks. Built on top of PyTorch, it offers a wide range of functions including ReLU, MaxPool and BatchNorm, and allows to use models like AlexNet or ResNet18. We report experimental results for inference and training over distant servers. Last, we propose an extension to support n-party private federated learning.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software