Description
Metadata
Settings
About:
Our ability to predict the effects of climate change on the spread of infectious diseases is in its infancy. Numerous, and in some cases conflicting, predictions have been developed, principally based on models of biological processes or mapping of current and historical disease statistics. Current debates on whether climate change, relative to socioeconomic determinants, will be a major influence on human disease distributions are useful to help identify research needs but are probably artificially polarized. We have at least identified many of the critical geophysical constraints, transport opportunities, biotic requirements for some disease systems, and some of the socioeconomic factors that govern the process of migration and establishment of parasites and pathogens. Furthermore, we are beginning to develop a mechanistic understanding of many of these variables at specific sites. Better predictive understanding will emerge in the coming years from analyses regarding how these variables interact with each other.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
3
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software