OpenLink Software

About: One of the challenges in the current COVID-19 crisis is the time and cost of performing tests especially for large-scale population surveillance. Since, the probability of testing positive in large population studies is expected to be small (<15%), therefore, most of the test outcomes will be negative. Here, we propose the use of agglomerative sampling which can prune out multiple negative cases in a single test by intelligently combining samples from different individuals. The proposed scheme builds on the assumption that samples from the population may not be independent of each other. Our simulation results show that the proposed sampling strategy can significantly increase testing capacity under resource constraints: on average, a saving of ~40% tests can be expected assuming a positive test probability of 10% across the given samples. The proposed scheme can also be used in conjunction with heuristic or Machine Learning guided clustering for improving the efficiency of large-scale testing further. The code for generating the simulation results for this work is available here: https://github.com/foxtrotmike/AS.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software