OpenLink Software

About: To satisfy a user’s need to find and understand the whole picture of an event effectively and efficiently, in this paper we formalize the problem of temporal event searches and propose a framework of event relationship analysis for search events based on user queries. We define three kinds of event relationships: temporal, content dependence, and event reference, that can be used to identify to what extent a component event is dependent on another in the evolution of a target event (i.e., the query event). The search results are organized as a temporal event map (TEM) that serves as the whole picture about an event’s evolution or development by showing the dependence relationships among events. Based on the event relationships in the TEM, we further propose a method to measure the degrees of importance of events, so as to discover the important component events for a query, as well as the several algebraic operators involved in the TEM, that allow users to view the target event. Experiments conducted on a real data set show that our method outperforms the baseline method Event Evolution Graph (EEG), and it can help discover certain new relationships missed by previous methods and even by human annotators.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software