OpenLink Software

About: I employ a simple mathematical model of an epidemic process to evaluate how four basic quantities: the reproduction number (R), the numbers of sensitive (S) and infectious individuals(I), and total community size (N) affect strategies to control COVID-19. Numerical simulations show that strict suppression measures at the beginning of an epidemic can create low infectious numbers, which thereafter can be managed by mitigation measures over longer periods to flatten the epidemic curve. The stronger the suppression measure, the faster it achieves the low numbers of infections that are conducive to subsequent management. We discuss the predictions of this analysis and how it fits into longer-term sequences of measures, including using the herd immunity concept to leverage acquired immunity.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software