OpenLink Software

About: We present calculations using the CovidSim code which implements the Imperial College individual-based model of the COVID epidemic. Using the parameterization assumed in March 2020, we reproduce the predictions presented to inform UK government policy in March 2020. We find that CovidSim would have given a good forecast of the subsequent data if a higher initial value of R0 had been assumed. We then investigate further the whole trajectory of the epidemic, presenting results not previously published. We find that while prompt interventions are highly effective at reducing peak ICU demand, none of the pro- posed mitigation strategies reduces the predicted total number of deaths below 200,000. Surprisingly, some interventions such as school closures were predicted to increase the projected total number of deaths.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software