Description
Metadata
Settings
About:
Group testing pools together diagnostic samples to reduce the number of tests needed to identify infected members in a population. The observation we make in this paper is that we can leverage a known community structure to make group testing more efficient. For example, if $n$ population members are partitioned into $F$ families, then in some cases we need a number of tests that increases (almost) linearly with $k_f$, the number of families that have at least one infected member, as opposed to $k$, the total number of infected members. We show that taking into account community structure allows to reduce the number of tests needed for adaptive and non-adaptive group testing, and can improve the reliability in the case where tests are noisy.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
3
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software