Description
Metadata
Settings
About:
The mass function of dark matter halos is one of the most fundamental statistics in structure formation. Many theoretical models (such as Press-Schechter theory) are based on the notion that it could be universal, meaning independent of redshift and cosmology, when expressed in the appropriate variables. However, simulations exhibit persistent non-universalities in the mass functions of the virial mass and other commonly used spherical overdensity definitions. We systematically study the universality of mass functions over a wide range of mass definitions, for the first time including the recently proposed splashback mass, Msp. We confirm that, in LambdaCDM cosmologies, all mass definitions exhibit varying levels of non-universality that increase with peak height and reach between 20% and 500% at the highest masses we can test. Mvir, M200m, and Msp exhibit similar levels of non-universality. There are, however, two regimes where the splashback mass functions are significantly more universal. First, they are universal to 10% at z<2, whereas spherical overdensity definitions experience an evolution due to dark energy. Second, when additionally considering self-similar cosmologies with extreme power spectra, splashback mass functions are remarkably universal (to between 40% and 60%) whereas their spherical overdensity counterparts reach non-universalities between 180% and 450%. These results strongly support the notion that the splashback radius is a physically motivated definition of the halo boundary. We present a simple, universal fitting formula for splashback mass functions that accurately reproduces our simulation data.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
4
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software