Description
Metadata
Settings
About:
We suggest the Doubly Multiplicative Error class of models (DMEM) for modeling and forecasting realized volatility, which combines two components accommodating low-, respectively, high-frequency features in the data. We derive the theoretical properties of the Maximum Likelihood and Generalized Method of Moments estimators. Two such models are then proposed, the Component-MEM, which uses daily data for both components, and the MEM-MIDAS, which exploits the logic of MIxed-DAta Sampling (MIDAS). The empirical application involves the S&P 500, NASDAQ, FTSE 100 and Hang Seng indices: irrespective of the market, both DMEM's outperform the HAR and other relevant GARCH-type models.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
15
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software